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Measurements are presented of the velocity structure function on the axis of a 
turbulent jet at Reynolds numbers R, Q 852 and in a turbulent duct flow a t  R, = 515. 
Moments of the structure function up to the eighteenth order were calculated, 
primarily with a view to establish accurately the dependence on the order of the 
inertial range power-law exponent and to  draw conclusions about the distribution 
of energy transfer in the inertial range. Adequate definition of the probability density 
of the structure function was achieved only for moments of order n < 10. It is shown, 
however, that, although the values of moments of n > 10 diverges from their true 
values, the dependence of the moment of the structure function on the separation 
r is still given to a fair accuracy for moments up to n x 18. The results demonstrate 
that the inertial-range power-law exponent is closely approximated by a quadratic 
dependence on the power which for lower-order moments (n 5 12) would be consistent 
with a lognormal distribution. Higher-order moments diverge, however, from a 
lognormal distribution, which gives weight to Mandelbrot’s (1971) conjecture that 
‘ Kolmogorov’s third hypothesis ’ is untenable in the strict sense. The intermittency 
parameter p, appearing in the power-law exponent, has been determined from 
sixth-order moments ( ( A u ) ~ )  - r2--11 to be p = 0.2f0.05. This value coincides with 
that determined from non-centred dissipation correlations measured in identical 
conditions. 

1. Introduction 
Important modifications to Kolmogorov’s ( 1941) local similarity theory were 

introduced in 1962 by Kolmogorov and Obukhov, who took into account spatial 
fluctuations in the turbulent energy dissipation E .  A specific form (lognormal) for the 
probability density of B,, the dissipation averaged over a volume of linear dimension 
r ,  was chosen. This choice, together with an assumed variation of the variance of In E, ,  

justified by Yaglom (1966), was described by Kolmogorov (1962) as a third 
hypothesis. The assumptions embodied in this hypothesis have often been referred 
to  as the lognormal model (hereafter LN). Mandelbrot (1976) has pointed out that 
the lognormal assumption is only a special, probably physically unrealistic, case of 
weighted curdling. Physical models (e.g. Corrsin 1962 ; Tennekes 1968 ; Saffman 1968) 
based on particular geometries for the active regions, have also been proposed. Other 
models, such as the Novikov-Stewart (1964) model and the @-model of Frisch, Sulem 
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& Nelkin (1978) have been developed which differ from LN in that the approach taken 
is not based on a probabilistic model of the dissipation. Frisch et al. (1978) emphasised 
the fact that the /3-model focuses on quantities, such as velocity amplitudes and the 
nonlinear energy transfer, in the inertial range. It has been pointed out (e.g. by 
Kraichnan 1974) that the dynamically relevant quantity is the nonlinear energy 
transfer and not the linear viscous dissipation. 

Most of the previous models have led to predictions for the variation of statistical 
properties of turbulence with Reynolds number. The two most commonly reported 
properties are the structure functions, in particular the behaviour of their moments 
in the inertial range, and moments of the velocity derivative. We consider in this 
paper primarily the velocity structure function and restrict our attention to a 
comparison between LN and the /3-model. The nth-order longitudinal velocity 
structure function may be written as 

((Au)") = ( [u ( z+  r )  -u(z)ln). 

When the separation lies in the inertial subrange 

(Au") - r i n ( @ ) .  (1)  

This can be obtained from energy-transfer considerations. Both LN and the /3-model 
lead to 

(Aun) - ( E ) i n r c n ,  
where 

g n 3n-&n9 

but the departure pin from the original similarity result is different for LN and the 
/3-model. For LN, the dependence on n of pin is quadratic, 

p i n  = &n(n- 3) > 

pin = $(n-3) .  (4) 

(3) 

whereas a linear dependence on n is obtained for the /3-model, viz 

In  (3)  and (4), ,u is the exponent in the inertial-range power-law behaviour of the 
autocorrelation of E 

where L is a lengthscale of the large structure of the flow. It is evident that the 
difference between (3) and (4) increases as n increases. In a previous experimental 
investigation (Antonia, Satyaprakash & Chambers 1982a) of velocity structure 
functions measured in laboratory and atmospheric shear flows, the experimental 
Reynolds-number variation was compared with predictions of LN and the /3-model 
derived from (2) by setting r equal to the Taylor microscale A. Both models were found 
to agree, to within the experimental scatter, with the experimental Reynolds number 
variation of moments, up to order 6, of the velocity structure function evaluated at 
r = A. Moments of order 8 seemed to be in closer agreement with the /3-model than 
with LN; it was noted, however, that moments of order higher than 8 would be 
required to validate the /3-model. Antonia et al. (19824 also plotted inertial-subrange 
values of moments of order n + 2 against corresponding values of moments of order 
n, with a maximum value of n equal to six. On the basis of these plots, i t  was 
concluded than LN provided a better representation than the /3-model to the power-law 
behaviour in these plots. 

The main purpose of the present paper is to provide data for high-order moments 
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of the velocity structure functions. Whilst such data have been used to  gain a better 
assessment of LN us. the P-model, it is envisaged that they would eventually be of 
use in constructing other intermittency models. It was clear that, in the context of 
LN us. the P-model, or perhaps more generally in the context of deciding between 
a quadratic and a linear dependence on n of the exponent, that  moments of order 
preferably higher than 8 would be needed. The experimental difficulties associated 
with the measurement of high-order moments of velocity derivatives have been 
discussed by Tennekes & Wyngaard (1972) and Frenkiel & Klebanoff (1975). While 
a decrease in the level of difficulty is expected for obtaining inertial-range structure 
functions, i t  seemed nevertheless likely that the experimental uncertainty in defining 
the tails of the probability density function or the finite dynamic range of the 
equipment would limit the maximum value of the moment that could be reliably 
determined. It seems important to know precisely the limitations and to ascertain 
whether turbulent velocity fluctuations are in fact bounded. 

A secondary aim of this paper was to throw further light on the magnitude of the 
intermittency parameter p which sets the value of cn for both LN and the P-model. 
This exponent intervenes in all models that  take into account the intermittent nature 
of the dissipation and quantifies the Reynolds number dependence of the structure 
functions and velocity derivatives for a given value of n. Antonia, Satyaprakash & 
Hussain (19823) compared estimates of y using different statistics of the velocity 
derivative. Most, although not all, of these statistics indicated a value of p close to 
0.2, instead of a more popular value of 0.5. I n  the literature, the latter value has 
usually been inferred from the inertial-subrange behaviour of the spectrum of (i3u/at)2 
( = u2 hereinafter).? A value of about 0.5 has also been suggested by Chorin (1982) 
on the basis of a vortex model. Estimates for p of 0.4 and 0.34 were obtained by 
Hentschel & Procaccia (1982) and Fujisaka & Mori (1979) respectively, using a 
maximum-entropy principle. It has been pointed out (Nelkin 1981) that  the estimate 
of y from u2 spectra needs to be carefully interpreted, preferably in the light of the 
autocorrelation, with inertial-range separations, for u2. It should also be recalled, 
however, that a value ofp = 0.5 was obtained by Gagne (1980) from the inertial-range 
autocorrelations of the centred variable u2 -(u2) (see Gagne & Hopfinger 1979). 
Autocorrelations for the non-centred variable u2 led to a value of y = 0.2. Since 
centred autocorrelations differ only by an additive constant from the non-centred 
ones, in the asymptotic limit as R, + co their power-law behaviour should be the same. 
As there is no a priori reason for using, a t  moderate Reynolds numbers, a centred 
instead of a non-centred variable, i t  seems highly desirable to  free the determination 
of y from this sort of uncertainty. To this purpose, a brief re-evaluation is made in 
this paper of estimates of p obtained from the sixth-order structure functions. It is 
clear that (3) and (4) yield the same value (= p)  f o r p n  when n = 6. This result follows 
from the relation (Frisch et al. 1978; Nelkin & Bell 1978) 

_ _ _ I N  ( (Au)6)  ( F ( X )  E ( X + r ) ) ,  
r2 

where r is the magnitude of the separation vector r .  Frisch et al. (1978) conjectured 
that this relation is model-independent. This conjecture is based on the following 
relation (e.g. Monin & Yaglom 1975, p. 618): 

1 d2(r2(eF)) 
( E ( x ) E ( x + ~ ) )  = -___- 

2 dr2 (7) 

- (€3, 
t It is usually assumed that u2 - 6 
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where cr is again the dissipation averaged over a volume of dimension r .  If we accept 
(Frisch et a,l. 1978) that  velocity differences Au(r)  over a volume of size r produce a 
transfer of energy to smaller scales of the order of 

r 

then (6) follows immediately from (8) and (7) .  The right-hand side of (8) can be 
interpreted as representing the dissipation of the energy ( A U ) ~  in a time of the order 
of the eddy turnover time r / A u .  While (8) leads to  the same expression as ( l ) ,  it  is 
probably worth underlining that (8) expresses a plausible physical idea, whereas ( l ) ,  
which is essentially the point of departure of the modified Kolmogorov (1962) and 
Obukhov (1962) snalyses, is based solely on dimensional analysis. Frisch et at!. (1978) 
suggested that careful measurements of the sixth-order structure function would give 
a useful check on ideas relating energy transfer and energy dissipation. From an 
experimental point of view, (6) seems to be a useful starting point for determining 
p, since i t  is conjecturably model-independent and sixth-order velocity structure 
functions can be measured more easily than the dissipation e. Furthermore, (8) tends 
to suggest that  the non-centred dissipation fluctuations are relevant to  (6). A few 
measurements of ( (Auj6) in plane and circular jets and the atmospheric surface layer 
were presented by Antonia et al. (1982a). The results were encouraging in that the 
inertial-subrange behaviour of ( ( A u ) ~ )  indicated a value (!z 0.2) consistent with the 
experimentally obtained inertial range behaviour of the autocorrelation of u2. I n  the 
present paper we present further measurements of ( ( A u ) ~ ) ,  paying particular 
attention to its inertial-range behaviour, in a circular jet and a turbulent duct flow. 
The reasons for selecting these flows as well as a brief description of the experimental 
facilities are given in $ 2 ,  and factors affecting the experimental accuracy of structure 
functions are considered in $3. I n  $4 we discuss the inertial-range limits and 
determine the exponent ,u from sixth-order moments and correlations of u2. The 
inertial-range behaviour of the structure functions up to order 18 is compared with 
theoretical models in $5.  

2. Flow configurations and instrumentation 
2.1. The axisymmetric j e t  and duct flow 

The measurements were made in two different flows: in a fully developed turbulent 
duct flow and in an axisymmetric jet (Mathieu & Comte-Bellot 1958). The duct had 
a half-width b = 9 cm and an aspect ratio of 12. The hot-wire probe was positioned 
a t  a downstream distance x /b  = 59 and at lateral location y / b  = 0.40. The present 
duct is a modified (MarBchal 1970) version of the duct used by Comte-Bellot (1965). 
Her measurements extended to  a maximum downstream distance of 118b, whereas 
now the available maximum length is limited to about 6Ob. Thus, to enhance the 
flow establishment, roughness elements were placed a t  the duct inlet (Gagne 1980). 
Flow chara,cteristics (table 1) are in general agreement wi%h those measured by 
Comte-Bellot (1965). Table 1 also contains the conditions for the axisymmetric jet 
for which structure function measurements were made. The jet nozzle diameter d was 
12 cm and the measurement stations were located a t  x / d  = 25 and 35. At this distance 
the flow is not quite self-preserving, but x/d < 35 was chosen to ensure that the jet 
development was not influenced by boundary effects. At x / d  = 35, the outer edge of 
the jet came close to the floor and a side boundary, but measurements indicated that 
the turbulence quantities a t  the centreline remain unaffected. The variations in 
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turbulence intensity and Taylor microscale between 25d and 35d are in agreement 
with the results of Wygnanski & Fiedler (1969). For comparison, turbulence 
characteristics at xld = 25, 30 and 35 are shown in table 1 for two different jet 
velocities. The value of R, is practically constant beyond xld = 25 (see also Antonia, 
Satyaprakash & Hussain 1980), which indicates that  the flow is close to self- 
preservation. At xld = 25 the spatial variation in the total turbulent energy during 
one turnover timescale is already negligibly small, so that spectral transfers can be 
considered to be in equilibrium. However, all that is needed for the present purpose 
is an established inertial subrange, which is not as severe a requirement as an 
equilibrium spectrum. The duct flow has the advantage of low turbulent intensity 
( 5  7 yo), which allows measurements of large negative (relative to the standard 
deviation v) fluctuations in velocity by means of hot wires. In  a jet, on the other hand, 
the lower cut-off imposed by the hot-wire anemometer is (3.5-4) v. In measurements 
of high-order structure functions the tails of the probability density function are 
important, and it is therefore of interest to work in a low-intensity turbulent fl0w.t 
This also favours the use of Taylor’s hypothesis, which is used in all structure-function 
measurements reported here. 

2.2. Instrumentation 
For the structure-function measurements a DISA55M10 constant-temperature 
system was used together with a standard gold-plated, 5 pm diameter, 1.1 mm long 
wire in the jet at xld = 25 and a 3 pm diameter, 0.35 mm long$ Wollaston wire a t  
x/d = 35 and also in the duct. The latter was also used for measurements of the 
u2 correlations. The output voltage was first conditioned by subtracting the d.c. 
component and by low-pass filtering a t  50 kHz (Krohn-Hite filter 3348, a t  
48 dB/octave) before it was amplituded and transmitted on-line to a Preston AID 
converter of a Nord 100 computer (see $3). The dynamic range of the whole system 
was 3 x lo4. When derivatives were required, an analog differentiator, with linear 
frequency response up to 50 kHz, was used before the line amplifier. 

Linearization of the velocity signal was carried out on the computer by fitting a 
power law to the calibration curve. This is a satisfactory procedure for mean velocities 
2 30 cm s-l. It was found that, for the jet, linearizations had a drastic effect on the 
probability density functions, whereas in the duct flow linearization is not essential. 
No linearization was carried out in the case of velocity-derivative correlation 
measurements, made in the jet, mainly because large signal excursions, owing to their 
rare occurrence, contribute little to dissipation correlations, which are moments of 
fourth order. Besides, linearization, by necessity analog in this case, would have 
introduced undesirable noise. 

3. Accuracy of moments 
Tennekes & Wyngaard (1972) concluded that signal-to-noise and integration-time 

limitations make measurements of moments higher than the fourth of the velocity 
derivative nearly impossible for signals characterized by a probability density 

The possibility exists that the turbulent velocity fluctuations are bounded in amplitude; this 
possibility is discussed in $3.2. 

1 In order to reduce averaging effects to a minimum, the ratio of wire length to Kolmogorov 
scale was kept, small as possible (3  6 Z,/T 6 7 )  and this a t  the risk of difficulties which could arise 
when lw/dw < 200. The Wollaston wire with lw/dw = 120, however, gave results consistent with 
previous measurements made with a wire of ZJd, > 200 (Gagne 1980). 
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FIQURE 1. Probability density functions in the axisymmetric jet at  Rh = 536 of u and Au 
normalized by their respective standard deviations, a = Au/<Au)z)i: A, r = 0.6 mm = 3.57; V, 
7.7 mm; d, 17.2 mm. A, a = u/(uz)i. 

function with tails extending to large amplitudes of the signal. They considered 
specifically three possible sources of error, which will be discussed in detail below : 
the dynamic range of the instrumentation, the resolution of the analog-to-digital 
converter and the sampling time. I n  addition, instrumental errors associated with 
calibration of the hot wire and linearization of the hot-wire response also affect the 
accuracy of the moments. Repeated calibration showed that the hot-wire response 
could be represented by a power law to f 1 yo accuracy (relative to  the operation 
point) for the extreme excursions in velocity. The associated error on the moments 
was estimated to be about k 20 yo for the moment of order 12, when it  is normalized 
by the corresponding power of the standard deviation of the function considered, 
calculated from the same data set. The error is of course not linear in the order of 
the moment. It is reduced to about f 7  yo for sixth-order moments and increases 
rapidly for moments higher than 12. I n  the jet these high-order moments are however 
also affected by the erroneous response of the hot wire when the instantaneous 
velocity becomes nearly zero or negative as a result of large negative excursions in 
velocity. 

The dynamic range of the instrumentation is not a cause for concern in the present 
experiment since the hot-wire signal was not recorded in analogue form; it was 
digitized directly using a 14 bit + sign AID converter (range k 5.12 V). The dynamic 
half-range of the converter is about 84 dB (=  16384). The maximum number m of 
standard deviations of A u  that could be recorded in the inertial range was of the order 
of 30. This should be more than sufficient to  enable an accurate estimate of the highest- 
order moment considered here. The time required to  obtain reliable data will be 
considered in $3.2, while our ability to  determine the tails of the probability density 
function is considered in $3.1. 
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FIGURE 2. Probability density function in the duct flow at R, = 515 of 
a = Au/((Au)~):: 0, r = 4.5 mm; 0, 13.5 mm. 

OL 

3.1.  Probability density functions 
The probability density function p,, of Au is shown in figures 1 (jet) and 2 (duct) 
for values of r spanning the inertial range (see $4). Also shown in figure 1 is the 
probability density function of u and of Au for r = 3.57. The latter probability 
density function is a close approximation to the velocity derivative u. The variation 
ofp,, with increasing values of r reflects the same type of behaviour as that described 
in detail by Van Atta & gark (1972), namely that the most probable value of Au is 
found not to be the zero value but rather a small positive value of a. For increasing 
separations the maximum in the probability density moves to a = 0. 

It is evident from figure 1 that the difficulties associated with determining p,, are 
intermediate between those involved in the probability density functions of u and 
u. Tennekes & Wyngaard (1972) emphasized, in the context of measuring the velocity 
derivative, that  data on high-order moments necessitate substantiating evidence in 
the form of moment distributions. I n  particular, moments an of a signal a cannot 
be trusted if the integrands anpa,  which feature in the defining relation 

a, 

(an )  = JPa, anpada ,  

have not decreased a t  the largest values of a measured, to a level a t  which the integral 
can be computed with reasonable accuracy. The probability density function of 
Au(a  = A U / ( ( A U ) ~ ) ? )  is shown in figure 3 for r z h on a log-linear plot. The experi- 
mental data only extend to I a I z 9, but for la I >, 2 the solid straight lines are adequate 
fits to the data. Similar fits were obtained for probability density functions obtained 
a t  other inertial subrange separations for r .  These straight lines suggest an exponen- 
tial form for the probability density function; this form has already been noted by 
Tennekes & Wyngaard (1972) and Frenkiel & Klebanoff (1975) in connection with 
the velocity derivative. These authors extrapolated this form to large values of a in 
an attempt to obtain correct estimates for (an). Tennekes & Wyngaard underlined, 
however, the uncertainty that the experimental data would follow the extrapolation 
of this exponential probability density function to extreme values of a. 
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FIGURE 3. Probability density function of Au/((Au)2)i for r x h in axisymmetric jet at  RA = 536: 
0, a = A u / ( ( A u ) ~ ) ?  < O ;  A, a > 0. Broken lines are extrapolations of solid lines beyond the 
experimental range of a. 

The integrand anpa is shown in figure 4 for n = 12 and for both positive and 
negative values of a. The closure of the integrand is achieved only by using the 
exponential extrapolation of pa; the parts of the integrand deduced from this 
extrapolation are shown as broken curves on figure 4. The large value of n highlights 
the significant contribution made by the negative part of the probability density 
function to (an>. The value of (an> computed directly? from the digital time series 
is 30 % smaller than that inferred from the extrapolated integrand in figure 4. The 
difference between extrapolated and non-extrapolated values clearly decreases as the 
order of the moment decreases. An important observation, however, is that there was 
no significant variation of this difference as the separation r changes in the inertial 
subrange. The implication of this observation with regard to the results of $5 is that  
the inertial-subrange power-law exponents could be correctly obtained from the 
( ( A u ) " )  data inferred using the non-extrapolated probability density functions. The 
maximum value of n for which this can be done is not known but for the present 
conditions ($5) n = 14 seems reliable, whereas n = 16 or 18 may be suspect because 
of oscillations exhibited by these structure functions. 

To improve the accuracy in determining the integrand anpa, when a = u, Frenkiel 
& Klebanoff used an interpolation procedure consisting of dividing the intervals 
between digitized points into steps corresponding to consecutive integer values within 
each interval. This procedure led to a significant increase in the number of individual 
data points and reduced the scatter in the measured tails pa, thus permitting a more 
reliable extrapolation of pa. This interpolation procedure was not implemented here 
partly because the scatter in the tails of pa would be smaller for a - Au than a - u, 
but mainly because the interpolation introduces a bias which needs to be estimated 
accurately. It should be noted, however, that the extrapolation of the 'smoothed ' 
interpolated data of Frenkiel & Klebanoff also follows the exponential form. 

An interesting question that arises is whether the experimental probability density 
function will continue to decrease to extremely large values o f a  or whether the signal 
a will in fact be bounded. The last proposition is difficult to test in view of the 
decreasing frequency a t  which increasing values of a occur. Tennekes & Wyngaard 

t This value was in close agreement with that inferred from the non-extrapolated probability 
density function. 
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1011 

FIGURE 4. Probability density function of Au multiplied by Au12 for r x h in axisymmetric jet 
at Rh = 536. Broken lines are extrapolations of solid lines beyond the experimental range of a. 
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FIGURE 5. Probability density function of u in the duct flow showing an exponential extrapolation 
to lo-* and the limits set by electronic counters. No excursions exceeded limits 2 and 3. 
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FIGURE 6. Convergence in time of structure functions to their value obtained from maximum record 
length, for two values of r corresponding to  the inertial-range limits in the jet a t  R,, = 536. (a) 
r = 4.6 mm = 298: 0,  n = 6; 0 ,  7; A, 11; A, 12. 7Au = 11.7 ms (rAu is the turnover time r /Au) .  
(b )  r = 17.6 mm = 1107, with same symbols as in (a). rAu = 27.2 ms. 

noted that the number of excursions of u beyond 20(u2)? were too small, even after 
several hours of recording time, to lead to a statistically stable average. The frequency 
of occurrence of large values of u was examined here for the duct flow with the hot 
wire at y/b = 0.4. The signal was compared with comparator levels set a t  -5.5(u2)? 
and - 6(u2)4, and the number of times these levels were exceeded was registered by 
electronic counters. For a 2; h period, only 20 counts were found a t  - 5.5(u2):, with 
no counts for - 6(u2)4. On the positive side, no excursions exceeded + 4.5(u2): over 
a 3 h period. This duration should be compared with the 20 min record time 
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corresponding to  9.2 x lo6 samples, the maximum available disc capacity. I n  figure 
5 we show the probability density function of u in the duct flow with an exponential 
extrapolation to  lo-*, an expectation corresponding to  a record duration of 2; to  3 h. 
The limits set by the counters are also indicated. This figure shows that the 
probability density function seems to fall off more rapidly than the exponential rate. 
In  any case, these observations highlight the futility of extending the duration of the 
digital record. This was also supported by observation in the jet. In  this flow, negative 
excursions are, in this case, already limited to about 3 . 5 ~  by the hot-wire response. 

3.2, Convergence time 
Two different criteria for determining the time required to obtain reliable data on 
moments have been considered. First, the time required for convergence of a moment 
to within f 5 % of its final value has been determined from running averages of (Au)", 
such as shown in figure 6 for two values of r corresponding to  the inertial-subrange 
limits and for both even and odd values of n ranging from 6 to 12. I n  figure 6 the 
running averages have been normalized by the final values attained a t  the end of the 
full digital record. 

A number of observations can be made. 
(i) Even and odd moments exhibit a number of oscillations whose amplitude 

generally decreases with time. 
(ii) Fluctuations are usually approximately in phase for both even and odd 

moments. However, even and odd moments are occasionally out of phase for some 
separations. 

(iii) Convergence for the larger separations is more rapid. 
Convergence is here considered to be attained when the moments oscillate within 

the f 5 % limits over one or more oscillation periods. For large separations this is 
satisfied for all moments n < 12, whereas, for small separations, this criterion is 
not fulfilled for the higher-order moments. 

Five per cent convergence times inferred from figure 6 are plotted in figure 7 .  Times 
for odd moments are generally larger than those for adjacent even moments; this 
supports the trend previously established (e.g. Antonia & Van Atta 1978; Antonia 
et al. 1982a) for both velocity and temperature structure functions. It should be noted 
that the overall record time is larger than the longest time required for convergence 
(in the present case for n = 1 1 ) .  Also note that, for even moments, the convergence 
time decreases, on average, as r increases. This trend is not apparent for odd 
moments : there is, perhaps surprisingly, relatively little variation of the odd 
moments over the inertial subrange. 

The mean-square relative error involved in computing the mean values of a 
stationary quantity an can be approximated (Tennekes & Lumley 1972) by 
2[(F2, /F;)-  11 I J T ,  where F,, = (012n)/(a2)n, F, = (un)/(a2)in,  I ,  is the integral 
timescale of a" and T is the finite integration time, assumed to be much greater than 
I .  When a is replaced by the velocity difference Au, the integral timescale can be 
defined as 

(9 )  

where t' = t + T ~ .  I1 can be rewritten in terms of the correlation coefficient p of u as 

( [u( t  + 7 )  - u(t)] [up' + 7 )  - u(t ') ])  

< ( A 4 2 )  
dT1, I1 = lorn 
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FIGURE 7. Time for moments of order n of Au to  reach +_5 yo of their final value. Record duration 
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FIGURE 8. Autocorrelation functions of u and of Au, normalized by (uz)  in the jet at R, = 536. 
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autocorrelation ( A u ( r )  Au(r+ r l ) ) / ( u 2 )  corresponds t o  the integrand (10). 

The integrand can be obtained, relatively economically, from a knowledge of the 
correlation coefficient p(7, ). The latter can be inferred from the second-order structure 
function, viz 

There is some advantage in determining p indirectly via the second-order structure 
function rather than by correlating time-delayed velocity signals, either directly or 
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FIGURE 9. Variation of integral lengthscale of Au, normalized by the Kolmogorov 
scale 7, with r / 7 .  Solid curve is least-squares fit 4.13 x 10-3(r/7)1.625. 

by inverse-Fourier-transforming the velocity power spectrum. While the reliable 
direct determination of p may be rendered difficult by the presence of low-frequency 
fluctuations, the second-order structure function does not, in fact, contain frequencies 
below a certain limit, proportional to (nominally) 7-l  (Gagne 1980). An illustration 
of this behaviour is provided by the distributions (figure 8) of the integrand in (10). 
Also shown in figure 8 is the distribution of p ( r l ) ,  plotted on a different scale, which 
was determined using (11)  and which led to  the determination of the integrand. As 
r+0,  the positive and negative contributions to the integrand become more equal; 
this conforms with the expectation of a zero integral timescale for the time derivative 
of the velocity signal. An interesting observation is that  the location of the minimum 
value of the integrand is very approximately equal to 7 or, when converted to length 
as in figure 8, to r (=  - UT) .  The integral lengthscale 1; (= I ,  U )  derived from the 
distributions of figure 8 increases with increasing r from zero, the value appropriate 
to u, to that corresponding to the integral scale of u. The solid curve in figure 9 is 
a least-squares power-law fit to  the data. The increase of I i /v  with r / q  is qualitatively 
similar to the increase reported by Antonia & Van Atta (1978) for integral timescales 
associated with temperature structure functions. Estimates of mean-square errors of 
moments of order n can only be made if integral timescales associated with these 
moments are known and if moments of order 2n are available. For n = 2 a reasonable 
estimate of the integral timescale would be about 0.61, (Sreenivasan, Chambers & 
Antonia 1978; Antonia & Van Atta 1978). I n  the jet, a t  r x A ,  the flatness factor of 
A u  is about 4.4 and the r.m.s. error for the present record duration (1310 s) is about 
0.05%. I n  the case n = 6, with measured values of ( ( A t ~ ) l ~ ) / ( ( A u ~ ) ) ~  and 
< ( A U ' ~ ) / ( ( A U ) ~ ) ~  equal to 1.05 x lo6 and 44.6 respectively and with a conservative 
'guess' for the timescale equal to 0.41,, the r.m.s. error is about 0.4%. Using the 
Lumley-Tennekes formula, the record duration required to obtain ( ( A u ) ' ~ )  to an 
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r.m.s. error of 5 yo is about 23 s. I n  contrast, the time required for the running moment 
of ( A U ) ~  to converge to within f 5  % of the final mean is 410 s (figure 7) .  However, 
it should be noted (Antonia & Van Atta 1978) that no direct correspondence has been 
established between the convergence time, as inferred from figure 6, and the time 
required to achieve a stationary mean for a prescribed mean-square relative error. 
I n  view of the uncertainty involved in estimating higher-order moments of Au and 
their integral scales, the estimates of figure 6 may provide a better guide for 
experimental record durations than the application of the Tennekes-Lumley formula. 

4. Determination of the constant p 
The behaviour of the structure function of order 6 seems best suited for the 

determination ofy  through the use of (6) and (5). Structure functions are not as prone 
to experimental uncertainty as are dissipation correlation measurements. The 
principal source of error in determining p stems from the definition of the limits of 
the inertial range. Usually the inertial range is determined from second-order 
moments (or the spectral equivalent) but it must be realized that second-order 
moments are subject to (weak) intermittency corrections. The third-order moments 

<(W3) = -C3r(e>, 

on the other hand, are free of any intermittency assumptions, and the constant C, 
is known (= g) for locally isotropic turbulence. 

4.1. Inertial-range limits 
I n  figures 10 (a, b)  the normalized second-, third- and sixth-order weighted structure 
functions 

where C, = -Ct ?-Kin are constantst and V, = (v(.))t and q = ( v3 /<c ) ) :  are respec- 
tively the Kolmogorov velocity and lengthscales, are plotted logarithmically as 
functions of r / q .  This normalized representation highlights more clearly the existence 
of a plateau characteristic of the inertial range. It is seen from figure 10(a) that, 
for the jet with RA = 536 (table l ) ,  the third-order structure function weighted by 
r / q  has a true plateau in the range 35 5 r / q  5 80. It is, however, reasonable to extend 
the inertial range to  25 5 r /?  5 105, over which the experimental points show only 
a small deviation (about 1 yo) from this plateau. For conditions corresponding to 
R, = 852 shown in figure 10(b) the inertial range of ( (Au),)  is 20 5 r / q  5 150. 

On the other hand, the data for ( ( A U ) ~ )  in figures 10 (a ,  b )  indicate a wider inertial 
range, when theratio ( (AU)~) /  V& is multiplied by (r /q)-!  (60 5 r / v  5 200forl2, = 536 
and 50 5 r / q  5 500 for R, = 852). I n  this context it should perhaps be noted that the 
data of Van Atta & Chen (1970), obtained in the boundary layer over the ocean, also 
suggest that the inertial range, as inferred from { (Au) , ) ,  is narrower than that 
deduced from ( ( A U ) ~ ) .  These authors noted that, for the narrower inertial range, 0.72 
is a considerably better fit to  the data than f .  On the other hand, the axisymmetric-jet 
data (8, x 1000) presented in Antonia et at. ( 1  982 a) suggested approximately identical 
inertial ranges of approximately one decade in extent, associated with either second- 
or third-order structure functions. All moments of Au should indeed exhibit the same 

f C: are the Kolmogorov ‘41 ’ constants, i.e. those that pertain to  no intermittency ( p  = 0). 



7 8  F. Anselmet, Y .  Gugne, E .  J .  Hopjhger and R .  A .  Antonia 

v 

v 

0 0 e m  N "c9 '? 
0 0, 0 0  

0 0 

O O  N 

+ . I .  

+ d .  

x o  D 

" 0  D 

+ o .  
+ O .  

+ 0 .  

+ a .  
+ ' I .  

+ < .  

+ a .  

+ a  

X O  D 

x o  D 

X O  0 

X O  D 
* o  D 

X O  D 

r o  0 

r O  0 

+ ~3 . ' O P  0 

1 1 1 , ,  , t I , , ,  , , 
0 0 - v m  N - Z ?  

0 0 
0 

2 

c . 



Velocity structure functions in turbulent shear JEows 79 

universal subrange. I n  practice it may be difficult to decide on the extent of the 
inertial range for an arbitrary order n of the moment, since the corrections to the 
power-law exponents in Kolmogorov’s (1941) original theory are not known a priori. 
There is little doubt that the customary determination of the inertial range has been 
via the use of n = 2 (the lowest non-trivial order), partly because of the availability, 
in relatively reliable form, of ( ( A u ) ~ )  and partly because of the often-expressed view 
that deviations from the exponent for ( ( A u ) ~ )  are too small to  be detected reliably. 
This latter view is perhaps arguable since, in the case of the &-model, the exponent 
is as large as 0.73 with p = 0.2. The importance of the effect of intermittency on the 
second order power-law exponent is clearly seen from figures 10(a, b ) ,  which also 
contain the second-order structure functions corrected respectively by the LN and 
&--model withp = 0.2 (LN: c2 = $+0.0222; &-model: 6, = $+0.0666 forp = 0.2). The 
correction has two effects: one is to make the inertial range somewhat narrower, and 
the other, more important, effect is to  shift the inertial range to lower values of r / q ,  
making it coincide with the ( (Au) , )  inertial range. The data suggest a correction 
intermediately between LN and the &-model. It may be noted that the correction 
also lowers the constant C, by about 10 % to  G, x 1.95 for an exponent of 0.7. 

Figure 11 shows the second-, third- and sixth-order structure functions in the form 
(12) for the duct corresponding to R, = 515 (table 1 ) .  I n  this case the third-order 
structure function would suggest an inertial range extending to r/7 x 300;t the 
second-order (corrected) moments set, however, a more plausible upper limit of 
r / y  x 110, so that the inertial range can be taken as 30 5 r/T 5 110. 

While the convergence rate of third-order moments is slower than for second-order 
moments, the use of ( (Au),) should, in the context of locating the inertial range, be 
preferred to ( ( A u ) ~ )  in view of the unambiguity in the power-law exponent for ( (Au),) 
in relation to that for ( ( A u ) ~ ) .  The duct-flow data suggest, however, that it is best 
to look for a concordance in both the ( (Au) , )  range and the corrected ( (Au) , )  range. 
Furthermore, the point r = h should fall within the inertial range. 

An aspect of importance for calculating the Kolmogorov scales used in (12) is the 
assumption of local isotropy when ( E )  is calculated from ( E )  = 1 5 ~ U - ~ ( u ~ ) .  A 
possible criterion of isotropy for scales contributing to u may be the degree to which 
the experimental value of C, approximates to  2. For the jet the third-order structure 
functions give values of 0.70 and 0.80 for R,, = 536 and 852 respectively when ( E )  
is calculated using the isotropic relation. These values indicate that local isotropy 
is well approximated in the jet, especially if we allow for the experimental uncertainty 
in determining u. In  the duct, at y /b  = 0.4, local isotropy seems tenuous in view of 
the value 1.4 for C, when the isotropic value of ( E )  is used. In  order to verify whether 
it is indeed a lack of isotropy which is a t  the origin of this rather large value of C,, 
we measured third-order structure functions a t  the duct centreline, where an 
approach to isotropy is expected. It was found that C, was indeed closer to the 
isotropic value $ ( x 1 .O a t  the duct centreline). Measured turbulent fluctuations at the 
jet and duct centrelines indicated that isotropy is better approximated for the jet 
than for the duct, which seems consistent with the difference in the C, values. 

Two estimates of the Kolmogorov microscale are given in table 1 for the duct flow ; 
namely 7 calculated using an isotropic ( E ) ,  and 7’ calculated using ( E )  inferred from 
the third-order structure functions with C, = t. When 7’ is used in (12), a value of 
0.55 is obtained for the Kolmogorov constant C,/4.02 using second-order structure 
functions (using a t power law). Note that 7’ was used as the normalizing lengthscale. 
The effect of this is to shift the inertial range to higher values of r/q’ than in the case 

t The extent of the ( ( A u ) ~ )  inertial range is considered further later in this section. 
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FIQURE 11. Structure functions of second-, third- and sixth-order multiplied by appropriate powers 
of r / f ,  with r/q’ in the duct flow a t  R,, = 515. Symbols and ordinate as for figure 10 (all values 
calculated with 7’). 

of the jet for practically the same value of R,. The use of 7’ does, however, make 
the constants C, (the agreement for C, is forced) agree with those of the jet for all 
the values of n considered. 

4.2. The value of the constant p 

Sixth-order structure functions give direct access to  the constant p. I n  figures 10 (a, 
b) and 11 these have been presented together with ( ( A U ) ~ )  and ( ( A u ) ~ )  to allow a 
proper assessment of the inertial-range behaviour. The sixth-order moments have 
been weighted by three different values of the exponent c6 which is related to p by 
y = 2-c6. An examination of the three different cases shown in figures 10(a, b)  and 
11 suggests that  1.75 < c6 < 1.85, the mid-range value of 1.8 yielding a value of 0.2 
for p. From the behaviour of the sixth-order moments i t  is clear that  a shift in the 
inertial-range limits to  larger values of r / v  would increase the value of p, whereas 
a shift to lower values would cause a decrease in p. For instance, a value of p = 0.35 
would be appropriate in the range 60 5 ‘17 5 200 inferred from a $ law for ( ( A u ) ~ ) .  
Compared with the duct, the upper limit of the jet inertial range could be somewhat 
increased, but p = 0.210.05 continues to  be the best estimate of the sixth-order 
structure function inertial-range behaviour. 
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FIGURE 12. Correlations of ti2 and u2-(zi2) normalized by ( z i t ) ,  with r / v  in the jet a t  R, = 536. 
The inertial range determined from figure 10(a) is indicated by vertical chain-dotted lines. The 
slopes that fit the data in the inertial range are also indicated. c ] , u 2 ;  0, zi2-(zi2). 

This value of p is in remarkably good agreement with the value obtained by 
Antonia et al. (1982b) from correlations of zi2 and by Frenkiel & Klebanoff (1975) from 
the asymptotic relation for the variance of In 8,. However, as discussed by Antonia 
et al. (1982 b ) ,  these latter procedures are based on several questionable assumptions. 
It should be noted that the assumption that the instantaneous dissipation e is 
proportional to v V 2 u 2  seems plausible in the sense that the degree of anisotropy 
is likely to vary only little over the inertial range. On the other hand, the setting 
of the cut-off frequency can be problematic, especially a t  large R,, when derivatives 
are used. As noted previously, structure functions are less subject to arbitrary 
assumptions and the results obtained substantiate the value of 0.2 for p. 

It was pointed out in 9 1 that this value is not in contradiction with p x 0.5 usually 
inferred from the inertial-range behaviour of the e-spectrum, which is equivalent to 
considering centred moments of e. The correlations of fluctuations of u2 with respect 
to ( u 2 )  indeed yield p z 0.5 (Gagne & Hopfinger 1979), consistent with p x 0.2 ob- 
tained for the correlation of the non-centred fluctuation u2. To demonstrate this more 
decisively, we have plotted in figure 12 the correlations of u2 and u2 - (u2)  measured 
in the jet, R, = 536 The inertial range limits obtained from figure 10 (a) are indicated, 
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and the slope was determined in this range. The values of the exponents which give 
the best fits to  the data are respectively ,u = 0.18 and ,uc = 0.48. It is worth noting, 
however, that, earlier available measurements of ( ( A u ) ~ )  do not support the present 
value of c6 = 1.8. The data of Van Atta & Park (1972) indicate a value of 1.5. 
Mestayer’s (1980) data indicated a ( ( A u ) ~ )  inertial range of almost one decade in 
extent. For this range, the data for ( ( A u ) ~ )  indicated a value of 1.65 for c6. It should 
be noted, however, that  the ( ( A u ) ~ )  data exhibit a bump a t  r x h and the resulting 
inertial subrange would be significantly narrower than that inferred from ( ( A u ) ~ ) .  
A value of 1.8 is possible over a reduced range of r .  The sampling frequency used by 
Mestayer was also rather low (the lower cut-off corresponds to the lower inertial-range 
limit), which results in poor resolution of the lower end of the inertial range. 

With regard to Van Atta & Park’s results, satisfactory convergence of the 
probability density functions was indicated only for their largest values of r (their 
inertial range was almost three decades in extent). For small r and n 3 5 they 
indicated that the maxima in the probability density function integrands may not 
be reached and that their moments would be suspect. The total number of samples 
in their experiment was one order of magnitude smaller than that in the present 
experiment. Figure 7 indicates that for convergence of the sixth-order structure 
function about 3 x lo6 data points are needed at small separations when RA 5 500. Van 
Atta & Park only used 6 x lo5 samples at RA x 3000. We have examined structure 
functions obtained from both our complete data set and from only part of it. When 
the number of samples is smaller by a factor of 2-3 than that required for convergence, 
the slope is not changed by a noticeable amount, although the value of the moment 
is quite different. However, when the factor is increased to about 10, the calculated 
structure functions show considerable oscillations, which can lead to incorrect 
estimates of the power-law exponents. 

5. High-order structure functions 
In  this section the inertial-range behaviour of high-order structure functions is 

examined with a view to assessing different intermittency models. For ,u we use the 
value of 0.2, determined in $4. 

5.1. Structure functions u p  to order 18 
The LN model predicts a decreasing inertial-range slope when the order 
n > 3(,u + 2)/2p ; in contrast, the P-model suggests a slope that increases linearly with 
n. It is clearly desirable to measure structure functions for values of n beyond that, 
n* say, for which change of sign is expected to occur in the rate of change of the slope 
in the LN model. With ,u = 0.2, n* is about 16. Unfortunately, for reasons given in 
$3, the probability density function is reasonably well defined only up to order 12. 
This nonetheless represents significant progress compared with available data (Van 
Atta & Park 1972; Gagne & Hopfinger 1979; Mestayer 1980). I n  view of the weak 
effect non-convergence has on the slope (see $ 3  and the end of $4) we believe that the 
duct data for n = 14 and the jet (RA = 852) data for n = 14, 16 and 18 give a reason- 
ably faithful indication of the power-law behaviour. 

I n  figures 13 (a ,  b )  the normalized structure functions ( ( A U ) ~ ) / ( U ~ ) ~ ~  are plotted 
logarithmically as functions of r / r  with n = 7, 8, 9,  10 and 12 for the jet, R, = 536 
(figure 13a) and n = 7, 8, 9, 10, 12 and 14 for the duct (figure 13b). As i t  is more 
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common to normalize by (uz)>: rather than V,, the Reynolds number R, = (u2): L/v 
is introduced in (12) in the form 

The slopes calculated from LN and the j3-model are drawn for orders 8 and 12 (with 
,u = 0.2) for comparison. This indicates that structure-function measurements up to 
order 8 cannot decide between LN and the P-model, unless perhaps the extent of the 
inertial range is one to two decades. Orders larger than 12, on the other hand, clearly 
invalidate the j3-model. Figure 13 re-emphasizes the importance of an objective 
criterion for determining the inertial range (see 54.1). A relatively small shift in the 
inertial zone can significantly affect the slopes and the conclusions! 

Figure 13 ( c )  contains even-order structure functions for n = 8-18 obtained in the 
jet a t  R, = 852. Orders 10 and 12 behave in a way similar to what is observed on 
figures 13(a, b ) .  However, oscillations, which are only weakly manifested for n = 10 
and 12, are rapidly amplified a t  larger n. Values of the exponents 5, given in table 
2 were obtained from least-squares fits to all the data points in the inertial range. 
A comparison with LN and the j3-model of the variation of the exponents cn is given 
in figure 14. Results obtained previously by others, limited to n ,< 9 except for 
Vasilenko, Lyubimtsev & Ozmidov (1975), are also included. The experimental 
results for n > 9 do not support the linear behaviour suggested by the P-model. Up 
to order 12, LN is a remarkably good approximation to  the data, and only structure 
functions for n 2 14 underline the limitations of LN. The latter observation must be 
treated with some caution in view of our inability to ascertain with confidence the 
accuracy of the highest-order structure functions. With this qualification, LN, which 
is the only model with a quadratic dependence of the exponent that satisfies = 1 
and Q = 2-p, is a good approximation for the behaviour of the exponent for n 5 12. 
The higher-order moments indicate that the distribution is a t  best only 'nearly 
lognormal '. In  particular, Mandelbrot (1972) emphasizes the possible 'near identity' 
of low-order moments of different random variables which have strikingly different 
high-order moments. We should perhaps also recall that the general inequality 
derived by Novikov (1971 ; see also Monin & Yaglom 1975, p. 622), 

pin < +n+p--2  ( in > 21, 

excludes the quadratic dependence (3) implied by LN. 

5.2.  A p-independent representation 
Vasilenko et al. (1975) suggested a test of the theoretical models which does not depend 
on the numerical value of p.  This representation is of interest because there have been 
suggestions that p might be variable with n (Frenkiel, Klebanoff & Huang 1979). The 
procedure is to define, using the inertial-range power-law distributions 

((Au)") - r jn-pfn ,  

[( (Au)~")]; - @-;pin, 

the function 
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order is divided by 50, the sixteenth by 10 and eighteenth by LO3. The vertical chain-dotted lines 
indicate inertial-range limits. The slopes for orders 8 and 12 calculated from LN (-) and the 
B-model (---), p = 0.2, are indicated for reference. 

We look for a relation of the type 

Fmn N (&n)Ym, ', 
independent of r ,  which imposes on the constant y m ,  I the constraint 

P;mn -P{ ln  ~ m ,  1 + + ( b m ,  1 - m )  Pgn = 0. (16) 

If a second-order polynomial 
pin = +n2 + &n + c 

is now introduced into (16), we obtain 

2anz[rn(m-2)-Z(Z- 2)  ym,1 ] -9c [ (m-2)  - (1-2)  Y ~ , ~ ]  = 0. (18) 

For a model that  is linear in n, (18) yields 

m - 2  
Y r n , l =  2-2' 
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n 2 3 4  5 6 7 8 9 1 0 1 2 1 4 1 6 1 8  
RA = 515 0.71 1 1.33 - 1.8 - 2.27 - 2.64 2.94 3.32 - - 
(duct) 

R,, = 536 0.71 1 1.33 1.54 1.8 2.06 2.28 2.41 2.60 2.74 - - - 
(jet) 

(jet) 
RA = 852 0.71 1 1.33 1.65 1.8 2.12 2.22 2.52 2.59 2.84 3.28 3.49 3.71 

TABLE 2. Values of the exponent C, for 2 < n < 18 

3 

S" 
2 

1 

0 2 4 6 8 10 12 14 16 18 
n 

FIGURE 14. Variation of exponent 5, as a function of the order n. 0 ,  RA = 515 (duct); 0,  536; 
x , 852. Symbols 0, A, V, 0 are respectively the exponents given by Mestayer (1980); Vasilenko 
etaZ. (1975); VanAtta& Park (1972);andAntoniaetaZ. (1982a).ThesolidcurveisLN withp = 0.2, 
the dotted curve the P-model and the chain-dotted line Kolmogorov's (1941) model. 

and for a quadratic model with c = 0 in (18) 

Substituting (19) into (15) for m = 1 and 1 = 3 and 4, we obtain, for a linear model, 

For the same values of m and 1 ,  the quadratic model yields after substituting (20) 
into (15) 

Figures 15 (a ,  b)  are log-log plots of F, versus Fan (figure 15a) and F, versus F3, (figure 
15b, for n = 2, 3 and 4, the present three experimental conditions and all values of 
r in the inertial range. The experimental data in figures 15(a, b)  are in reasonable 
agreement with LN up to order 12 (n = 3 and 4 in the presentations). However, the 

F, N (I$,)-+, F, - ( 2 2 )  
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FIGURE 15. Plots of moments F, as a function of (a) F,, (n = 2,3) ;  ( b )  & (n = 2,3 ,4)  for the data 
taken from all three flow conditions: x , duct, R,, = 515; 0, jet, RA = 536; 0,  jet, R, = 852. - --, 
LN ----- /3-model; - least-square fit to experimental data. 

slopes depend weakly on the order n, in contrast with a true quadratic model, which 
requires that ym, does not depend on n. This observation confirms the inferences 
made from figure 14 that the distribution is not lognormal in the strict sense. Because 
of the deviation from a true quadratic behaviour the possibility of matched 
two-segment linearity i n n  as suggested by Schertzer & Lovejoy (1983) cannot be ruled 
out entirely. 
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6. Conclusions 
To distinguish between dissipation models, such as the lognormal model and the 

dynamical /?-model developed by Frisch et al. (1978) relatively high-order moments 
of the velocity derivative or the velocity structure function are required as well as 
an accurate determination of the intermittency parameter p. In  this paper we have 
focused mainly on the velocity structure function and measured moments of order 
as high as 14 in a duct flow and 18 for a moderately high-Reynolds-number 
axisymmetric jet. These relatively high-order moments necessitated a careful appraisal 
of the experimental uncertainty, in particular the error involved in determining the 
extreme tails of the probability density function. Convergence-time considerations 
and the requirement of convergence for the moment integrands indicated that 
satisfactory accuracy could not be maintained for moments of order higher than about 
12. However, i t  was also noted that the inertial range slope associated with higher-order 
moments should not be significantly affected by the decreasing accuracy of these 
moments. As a result, the behaviour of moments as high as 18 is believed to be given 
to fair accuracy. 

An important consideration in estimating the inertial range power-law exponents 
accurately is the careful definition of the bounds of the inertial range. It is argued 
that the second-order moment is influenced by the intermittency of the dissipation 
field and may not be an unambiguous indicator of the inertial range. The approach 
adopted is to consider both second- and third-order moments, the latter remaining 
unaffected by intermittency. 

The sixth-order structure functions indicate a value of p of 0.2 (k0.05). This 
estimate is, to within the conjecture of Frisch et al. (1978), model-independent and 
not as ambiguous as that derived from fluctuations of the velocity derivative squared. 
Autocorrelations of these non-centred fluctuations lead to the same value of p. Once 
p is firmly established, a meaningful comparison between lognormal and /?-models 
can be carried out. Figures 14 and 15 underline that the linear variation of the /?-model 
is not supported by the data. Although moments up to  order 12 are closely 
approximated by the lognormal model, the deviation from it for higher-order 
moments seems genuine, notwithstanding the experimental uncertainty of estimating 
these moments. 
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